
Sylva WG6
Git strategy (repos, branches, tags)

15/5/2025

Git Intents shall allow us to

• Onboard a CNF – put an existing Network function under Git
control

• Install a CNF (from scratch)
• Terminate a CNF (what does it mean...)
• Upgrade a CNF
• Perform CNF Change management
• Execute Tests

For the CNF

• We want to
oReference versions we validate (not all the published versions)
oAvoid having multiple sources of truth
oManage multiple versions/instances in //
oBe able to apply a patch to any version
oBe able to compare easily the difference between the versions
oWrite intents that can be shared with operations (not necessarily GitOps experts)
oBe clear on what is deployed on the automation enabler / what is deployed on the

target cluster

Git Structure: all in one to start
├── prepare
│ ├── base # ns, sa
│ | ├── remote
│ | └── niftz
│ ├── (rbac) # rolebinding
│ | ├── remote
│ | └── niftz
│ ├── (sensitive data) # secrets, certificates
│ | ├── remote
│ | └── niftz
│ ├── ...
│ └── (postconfiguration)
├── deploy
│ ├── Components
│ | ├── component1
│ | ├── ...
│ | └── componentN
│ └── (post-installation)
├── overlays # Komposer / Kustomize objects
│ ├── overlay1
│ └── overlay2
├── entrypoints # Sequencer / Flux objects
│ ├── release1
│ └── release2
├── (tests)
└── sources
 ├── git-repositories
 └── helm-repositories

Usually the vendor approach as they want to "sell" GitOps packages
Problem: we couple here the CNF and its configuration => risk to create as many Sources of Truth as
Repositories

Git Structure: 2 repositories approach

├── prepare
│ ├── base # ns, sa
│ ├── (rbac) # rolebinding
│ ├── (sensitive data) # secrets, certificates
│ ├── ...
│ └── (postconfiguration)
├── deploy
 ├── Components
 ├── component1
 ├── ...
 └── componentN

├── base
│ ├── remote
│ ├── niftz
├── overlays # Komposer / Kustomize objects
│ ├── overlay1
│ └── overlay2
├── entrypoints # Sequencer / Flux objects
│ ├── kustomization.yaml
│ ├── release1
│ └── release2
├── values
│ ├── context1
│ └── context2
└── sources
 ├── git-repositories
 └── helm-repositories

├── base
│ ├── remote
│ ├── niftz
├── overlays # Komposer / Kustomize objects
│ ├── overlay1
│ └── overlay2
├── entrypoints # Sequencer / Flux objects
│ ├── kustomization.yaml
│ ├── release1
│ └── release2
├── values
│ ├── context1
│ └── context2
└── sources
 ├── git-repositories
 └── helm-repositories

├── base
│ ├── remote
│ ├── niftz
├── overlays # Komposer / Kustomize objects
│ ├── overlay1
│ └── overlay2
├── entrypoints # Sequencer / Flux objects
│ ├── kustomization.yaml
│ ├── release1
│ └── release2
├── values
│ ├── context1
│ └── context2
└── sources
 ├── git-repositories
 └── helm-repositories

Generic ~ helmreleases / vendor operators

Responsibility: Technical Skill Center

Specific: values/secrets, config, post-configuration
Target Cluster
Could be 1 repo for all deployments but
RACI/RBAC/Readability issues => 1 specific repo
pointing to generic / operation organization

Responsibility: Operational Skill Center

Branches & tags
• The GitOps system must have clear Git references

o Branch
o Tags

• Both approaches are possible:
o release branches versus releases associated with tags
o We can protect branches and tags

• Versioning shall be self explicit (all the info int he tag or the branch)
• We like to view directly what is deployed when looking in GitLab and not

guessing which branch is the right one
• Tag generation is easy with semantic release and can be adapted for Vendor

inputs even with double versioning
• Tags are well adapted for renovate. MR will be suggested on tag

changes

Branches & tags
• Protected branch: main
• Tags: lots of tags following semantic release (fix, feat, breaking

changes)
• Tags: double versioning format

o<vendor version>+<orange version>, vendor version set in a txt file (MR
needed to modify it), orange version managed by semantic

oe.g, 24.2.0+orange-1.0.1, 24.7.2+orange-1.2.3

• Dev branches (upgrade, patch, feature change)

The 1-protected branch problem
• If we have 1 branch hosting lots of tags, how to apply changes in

"old tags"
• Note as we split Helmrelease versions and configuration version,

the problem deals only with Vendor inputs not with configuration
changes (that have a simple semantic versioning x.y.z)

• In this case we MUST branch and protect the new branch

The 1-protected branch problem
• Vendor Backporting is rare for the moment
• Upgrading is usually the solution, we may expect that we have

already a tag corresponding to the upgrade as we validated the
version

	Diapositive 1 Sylva WG6
	Diapositive 2 Git Intents shall allow us to
	Diapositive 3 For the CNF
	Diapositive 4 Git Structure: all in one to start
	Diapositive 5 Git Structure: 2 repositories approach
	Diapositive 6 Branches & tags
	Diapositive 7 Branches & tags
	Diapositive 8 The 1-protected branch problem
	Diapositive 9 The 1-protected branch problem

