Sylva WG6

Git strategy (repos, branches, tags)
15/5/2025

Git Intents shall allow us to

* Onboard a CNF - put an existing Network function under Git
control

* Install a CNF (from scratch)

* Terminate a CNF (what does it mean...)
 Upgrade a CNF

* Perform CNF Change management

* Execute Tests

For the CNF

* We want to
o Reference versions we validate (not all the published versions)
o Avoid having multiple sources of truth
o Manage multiple versions/instancesin//
o Be able to apply a patch to any version
o Be able to compare easily the difference between the versions
o Write intents that can be shared with operations (not necessarily GitOps experts)

o Be clear on what is deployed on the automation enabler / what is deployed on the
target cluster

Git Structure: all in one to start

—— prepare
- base # ns, sa
[-— remote

-— niftz

—— (rbac) # rolebinding

| -— remote

-— niftz

—— (sensitive data) # secrets, certificates

[-— remote

| L— niftz

—— (postconfiguration)
—— deploy
|-— Components
| — componenti
|
| L— componentN
L— (post-installation)
—— overlays # Komposer / Kustomize objects
l—— overlayl
L— overlay?2
—— entrypoints # Sequencer / Flux objects
I—— releasel
L— release2
—— (tests)
—— sources
— git-repositories
— helm-repositories

Usually the vendor approach as they want to "sell" GitOps packages
Problem: we couple here the CNF and its configuration => risk to create as many Sources of Truth as
Repositories

Git Structure: 2 repositories approach

— prepare
— base # ns, sa
|— (rbac) # rolebinding

(sensitive data) # secrets, certificates

[TT

(postconfiguration)
— deploy
|— Components

': componentl

L— componentN

Generic ~ helmreleases / vendor operators

Responsibility: Technical Skill Center

}_

— base
F— remote
F— niftz

—— base

F— remote

—— base
r— remote
r— niftz
—— overlays # Komposer / Kustomize objects
—— overlayl
—— overlay2
—— entrypoints # Sequencer / Flux objects
—— kustomization.yaml
—— releasel
—— release2
—— values
—— contextl
—— context2
—— sources
— git-repositories
— helm-repositories

Specific: values/secrets, config, post-configuration
Target Cluster

Could be 1 repo for all deployments but
RACI/RBAC/Readability issues => 1 specific repo
pointing to generic / operation organization

Responsibility: Operational Skill Center

Branches & tags

* The GitOps system must have clear Git references
o Branch
o Tags

 Both approaches are possible:
o release branches versus releases associated with tags
o We can protect branches and tags

* Versioning shall be self explicit (all the info int he tag or the branch)

* We like to view directlﬁwhat is deployed when looking in GitLab and not
guessing which branch is the right one

* Tag generation is easy with semantic release and can be adapted for Vendor
Inputs even with double versioning

* Tags are well adapted for renovate. MR will be suggested on tag
changes

Branches & tags

e Protected branch: main

* Tags: lots of tags following semantic release (fix, feat, breaking
changes)

* Tags: double versioning format

o <vendor version>+<orange version>, vendor version set in a txt file (MR
needed to modify it), orange version managed by semantic

oe.g, 24.2.0+orange-1.0.1, 24.7.2+orange-1.2.3
* Dev branches (upgrade, patch, feature change)

.2.0+orange-1.0.0 = 347 0+orange-1.0.1 * 24 4. 0+orange-1.0.0
P i = .
& \"-:’> e \‘m%
& & & a5
) o b %
W & }u
W el A
2
& G &
develd P"} e A I
[-
R"é’ .\Q_:-
-y
" e
AT ¥
) " .ﬁéﬂ
v

dev-24.4.0 e

The 1-protected branch problem

* If we have 1 branch hosting lots of tags, how to apply changes in
"old tags"

* Note as we split Helmrelease versions and configuration version,
the problem deals only with Vendor inputs not with configuration
changes (that have a simple semantic versioning x.y.z)

* |In this case we MUST branch and protect the new branch

+ 24.1.040range-1.0.0 + 24.1.0+4orange-1.0.1 + 24 .4.040range-1.0.0 + 24.4.2+orange-1.0.0

The 1-protected branch problem

* Vendor Backporting is rare for the moment

* Upgrading is usually the solution, we may expect that we have
already a tag corresponding to the upgrade as we validated the
version

	Diapositive 1 Sylva WG6
	Diapositive 2 Git Intents shall allow us to
	Diapositive 3 For the CNF
	Diapositive 4 Git Structure: all in one to start
	Diapositive 5 Git Structure: 2 repositories approach
	Diapositive 6 Branches & tags
	Diapositive 7 Branches & tags
	Diapositive 8 The 1-protected branch problem
	Diapositive 9 The 1-protected branch problem

