
GitOps limitations



CNF LCM Automation

Our goal is to automate CNF LCM
• Installation
• Termination
• Upgrade



CNF Automation

• Vendors are very creative and more or less Cloud native
o 1 top helm charts
o Multiple Helm Charts with static sequence order 
o Vendor operators
o Vendor "orchestrator"

• Not sure there is 1 structure/method to tackle LCM due to the diversity of the CNF 
implementations

• We want 1 single source of truth for that we imagined the generic (Helmreleases in 1 
place)/specific (values for the different target clusters) repositories approach, but it 
triggers also issues

• Termination procedures are usually missing and rarely complete (remaining resources) -
commenting resources in head kusto does not mean that they will be cleanup

• The main difficulty deals with upgrades as for upgrade, the procedure may differ from the 
installation

• The less cloud native, the more dependencies



1 major stake for upgrade

• Be able to invalidate all the automation objects at once – restart 
automation as it would be an installation ~reset the reconciliation 
loops

• In fact if we do not invalidate them we need to manage the 
sequences by suspending some resources before the other
o It is risky 
o It breaks the full automation path



Focus on 3 upgrade scenarios

Generic

Specific

"easy" to understand for 
operations – everything is written
Inclusion to link and sync 
Generic and Specific sources to 
avoid starting upgrading with part 
of old intents

Operator

Intents = Helm chart 
Referencing dummy 
kustomization with 

target version 
number

Sylva way

Dev to be done...1 per CNF...
Hard to be generic
Need to understand each vendor 
logic

Works well for complex Sylva upgrade
Hard to understand for operations (no 
more intent just the helm chart that will 
produce the manifests + values/secrets)

Dev of a Helm chart per function

Include Generic src



Testing an alternative approach

• Custom development in Go of a tool watching GitRepositories 
updates and setting involved Kustomizations and HelmReleases 
status to False

• It forces Flux to reconcile Kustomizations respectful of 
dependencies order

• Still under test on complex CNF, to validate the approach
• If successful, should be generic and not depend on the Flux 

intents architecture (mono-repo, specific / generic, repository 
composition using includes, etc.)


	Diapositive 1 GitOps limitations
	Diapositive 2 CNF LCM Automation
	Diapositive 3 CNF Automation
	Diapositive 4 1 major stake for upgrade
	Diapositive 5 Focus on 3 upgrade scenarios
	Diapositive 6 Testing an alternative approach

